If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9x^2+56x+90=0
a = -9; b = 56; c = +90;
Δ = b2-4ac
Δ = 562-4·(-9)·90
Δ = 6376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6376}=\sqrt{4*1594}=\sqrt{4}*\sqrt{1594}=2\sqrt{1594}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-2\sqrt{1594}}{2*-9}=\frac{-56-2\sqrt{1594}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+2\sqrt{1594}}{2*-9}=\frac{-56+2\sqrt{1594}}{-18} $
| 5x^2-3x+4=- | | 4x6x–9.5=46 | | 6=x/5 | | V=2t^2+4t+11 | | 2x^2+22x+56=- | | 6=x/5 | | 5^x^2-3x=625 | | (2x+3)-(2x=1) | | 7(2n+1)=8(6n+8)+6 | | x+(x+10)+(x+60)=2125 | | -85-13x=69-6x | | -162+12x=102+4x | | 25x+(-11)=-86 | | 34n=-63 | | 15x-151=6x+155 | | 9+5x=4x+10 | | 6x-1=10x-5 | | 0.5x=32.5 | | 3x^2+17x+10=- | | x+.15x=13500 | | 7/8y+1/4=2 | | 4x+2x=3x=9 | | 3x+16x+7=9 | | -5(b+1)=-2(2b+4) | | y=(15^1)+1 | | 5x/7=1/14=7/28 | | y=(15^0)+1 | | 5q=10q+50 | | 5t+6+2t-6t=6+3 | | y=(15^-1)+1 | | 9=5-y | | 10(x+5)=11 |